[Question]:
Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it is able to trap after raining.
For example,
Given
[Analysis]:
The amount of rain that Ai can keep depends on the minimum of the maximum left/right (Aj, Ak), j<i<k. So need to find out maximum heights on Ai's left and right.
Given
[0,1,0,2,1,0,1,3,2,1,2,1]
, return 6
.[Analysis]:
The amount of rain that Ai can keep depends on the minimum of the maximum left/right (Aj, Ak), j<i<k. So need to find out maximum heights on Ai's left and right.
[Solution]:
//--- Java Code ---
//--- Java Code ---
public class Solution {
public int trap(int[] A) {
if (A.length <3) return 0;
int[] leftHigh = new int[A.length];
int[] rightHigh = new int[A.length];
int lf = A[0];
int rt = A[A.length-1];
for (int i=1; i<A.length; i++) {
leftHigh[i]=lf;
if (A[i] > lf ) lf = A[i];
}
for (int i=A.length-2; i>=0; i--) {
rightHigh[i] = rt;
if (A[i] > rt ) rt = A[i];
}
int sum = 0;
for (int i=1; i<A.length-1; i++) {
int temp = Math.min(leftHigh[i], rightHigh[i]) - A[i];
if (temp>0) sum+= temp;
}
return sum;
}
}
//--- C++ Code ---
class Solution {
public:
int trap(int A[], int n) {
if (n<=2) return 0;
int leftMax[n];
int rightMax[n];
int tmp = 0;
for (int i=0; i<n; i++)
tmp = leftMax[i] = max(tmp, A[i]);
tmp=0;
for (int i=n-1; i>=0; i--)
tmp = rightMax[i] = max(tmp, A[i]);
tmp=0;
for (int i=0; i<n; i++)
tmp+= min(leftMax[i], rightMax[i])-A[i];
return tmp;
}
};
No comments:
Post a Comment